贪心算法--汽车加油问题

贪心算法--汽车加油问题

基本要素:

贪心选择:在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解。

最优子结构:当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。

过程:

建立数学模型来描述问题;

把求解的问题分成若干个子问题;

对每一子问题求解,得到子问题的局部最优解;

把子问题的解局部最优解合成原来解问题的一个解。

汽车加油问题

一辆汽车加满油后可行驶 n公里。旅途中有若干个加油站。设计一个有效算法,指出应 在哪些加油站停靠加油,使沿途加油次数最少。

输入格式:

第一行有 2 个正整数n和 k(k<=1000 ),表示汽车加满油后可行驶n公里,且旅途中有 k个加油站。 第二行有 k+1 个整数,表示第 k 个加油站与第k-1 个加油站之间的距离。 第 0 个加油站表示出发地,汽车已加满油。 第 k+1 个加油站表示目的地。

输出格式:

输出最少加油次数。如果无法到达目的地,则输出“No Solution!”。

输入样例:

7 7

1 2 3 4 5 1 6 6

输出样例:

4

贪心性质分析:

找到汽车满油量时可以行驶的最大路程范围内的最后一个加油站,加油后则继续用此方法前进。需要检查每一小段路程是否超过汽车满油量时的最大支撑路程。

代码

#include

using namespace std;

int n,k;

int a[1000];

int main()

{

cin>>n>>k;

for(int i=0;i<=k;i++)

cin>>a[i];

int minCount=0,drive=n;

bool flag=true;

for(int i=0;i<=k;i++){

if(drive-a[i]>=0)

drive-=a[i];

else{

drive=n;

drive-=a[i];

if(drive<0)flag=false;

minCount++;}}

if(!flag)cout<<"No Solution!"<

else cout<

return 0;

}

遇到的问题及结对情况

刚开始解决输出"No Solution!"时,采用直接打印然后break,犯了比较低级的错误。结对能够对问题有更加深的理解且解决问题快。

🎯 相关推荐

《只狼》鞭炮获得流程分享 爆竹获取方法
365bet进入官网

《只狼》鞭炮获得流程分享 爆竹获取方法

📅 07-22 👁️ 8619
塞尔达怎么盾反 完美防御的攻略
365体育在哪下载

塞尔达怎么盾反 完美防御的攻略

📅 09-01 👁️ 8960
您所访问的页面不存在
365bet进入官网

您所访问的页面不存在

📅 12-21 👁️ 2668
红米2a内屏要多少钱
365bet进入官网

红米2a内屏要多少钱

📅 07-10 👁️ 1132
拮 古汉语意思
365体育在哪下载

拮 古汉语意思

📅 08-10 👁️ 362
实况足球系列下载
365体育在哪下载

实况足球系列下载

📅 07-17 👁️ 5723